Spring Training Camp for Advanced Building Science & Practical Application, Hockey Valley Resort, April 15, 2019

New Gas Technologies that Complement Low Energy/Carbon Homes

Farzin M.Rad PhD, P.Eng 647 628 2648 frad@uniongas.com

Outline

1. Who we are.

- 2. Recent Residential Pilot Projects.
 - a) Optimization of Electric Assets such as PV and Battery Storage.
 - b) mCHP for Residential Homes- Three Demo Projects
 - c) Lessons Learned to Date from mCHP Pilots
 - d) Hybrid Heating Solution
 - e) Smart Dual Fuel Control, and Preliminary Results

ÉÉNBRIDGE

ENBRIDGE

Enbridge in Ontario

Enbridge Gas Inc.

- Enbridge delivers about 37% of Ontario's total energy use each year.
- More than 100 years of experience in safe and reliable service.
- A new developer of electricity transmission.
- The Sarnia-area Dawn Storage Hub is Canada's largest and one of the top-5 natural gas trading hubs in North America.

Natural gas

3.7 M customers, heating >75% of Ontario homes.

DSM Programs

Saved customers ~20 billion cubic metres of natural gas.

Renewables

7 projects: wind, solar and hydroelectric (490 MW).

Liquids pipelines

3 pipelines which move 419,000 barrels per day.

Employment

~4,800 Ontario-based permanent and temporary staff.

Community investment

\$6.6 M invested in community initiatives across Ontario in 2017.

The Energy Landscape in Ontario

Natural gas plays a critical and cost effective role

*Environmental Commissioner's Annual Energy Conservation Report 2016-2017 (Volume 2) **Enbridge's 2017 Ontario LTEP Submission.

Pilot Projects

Optimization of Electric assets such as PV and Battery Storage Integration of mCHP in homes

Remarks on CHP

- CHP can help the Ontario Government with:
 - 31 TWh conservation target by 2035
 - 1400 3700 MW short fall anticipated by 2023 2025
 - Province wide GHG emission reduction by displacing generation from less efficient gas plants
 - Resiliency for sustained occupancy
- Integration of microCHP with PV and battery storage could optimize the operation of these assets
- CHP should be considered in future mix of electricity generation, just like other DG technologies

Optimization of Electric assets such as PV and Battery Storage

Pilot Project: Collaboration between gas and electric utilities and a municipality Moving Towards NZEE Communities

- Overall Objective:
 - Learn how the electric and thermal solutions can be integrated to:
 - provide for more grid flexibility
 - reduce GHG emissions
 - minimize operational costs to customers
 - Learnings from the in-depth M&V plan will help us to optimize the system configuration & design for future installations

The Role of mCHP in Ontario NZEE Homes Optimize, right size, reduce

- 1. Optimize electrical assets
 - Maximize use of battery storage
 Solar harvest is low in winter
 - · Right sizing of PV
- 2. Right sizing of ASHP
 - Avoid oversizing of ASHP to meet space heating loads (oversize air-conditioner)
 - ASHP performance drops significantly at low temperatures, acts like electric resistance heating
- 3. Reduce GHG emissions: (site vs. source)
 - Central gas plants are projected to run long hours due to nuclear refurbishment and electrification

Heat Pump COP vs Outdoor Temperature

Project Background

Current House Selected from Alectra's Power.House Program

- Alectra installed PV and Battery Storage at 20 retrofit homes through their Power.House Program (2015 – 2017)
- Current pilot is a house that participated in Power.House Program
- PV: 5 kW
- Solar storage: 11.4 kWh Lithium-ion battery
- Sunverge controller
- EV charger

Enbridge Partnered to Install Hybrid Heating Equipment

Replaced gas furnace and DWH heater

- Aisin Coremo mCHP
 - Electrical output: 1.5 kW
 - Thermal output: 12,000 Btu/hr
 - · First of its kind indoor installations in a residence
- · Condensing Navien Gas Boiler
 - Input: 150,000 Btu/hr
- · Air source heat pump
 - Goodman 3 Ton
- One smart air handler (iFLOW) for zone control
- Water storage tank
 - NTI 80 Gal

mCHP Operating Strategy

Flexible GHG Reduction mode

- mCHP runs only when heat sink is available to achieve high CHP system efficiency
 - No heat dump
 - Hot water storage tank will act as a buffer to store mCHP waste heat
- mCHP would run based on bulk electricity grid *marginal emission factors* to ensure GHG savings are achieved:
 - · GHG emissions are reduced by displacing on-site electrical and thermal loads
- Space heating priority: mCHP would run based on outside temp and ASHP coefficient of performance (cop)
 - Typically mCHP would run when ambient temperature drops below a predetermined temp.
- Navien boiler provides auxiliary heat and DWH
- Solar PV will never be curtailed

Pilot Projects

ENBRIDGE

mCHP- Aisin Coremo demonstration **Existing NZE home retrofit**

13

ENBRIDGE

mCHP- Aisin Coremo demonstration **Existing NZE home retrofit - BK Cornerstone**

16

Aisin Coremo demonstration

Existing NZE home retrofit

Aisin Coremo demonstration

Existing NZE home retrofit

ENBRIDGE

9

ENBRIDGE

Aisin Coremo demonstration Monitoring and tracking

Monitoring Platform

Aisin Coremo demonstration Monitoring and tracking

Transmission

mCHP following trend of mechanical equipment energy consumption 0.3 0.2 0.1 0 2 7 mCHP Power Generation L1 (kW) + Existing Gas Air Fumace Power Consumption (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Consumption 11 (kW) - Existing Heating Air Source Heat Pump Power Pow 2017-12-10 017-12-08 Aisin Coremo mCHP Power Generation L1 (kW) — Existing Gas Air Furnace Power Consumption (kW) — Existing Heating Air Source Heat Pump Power Co mption L1 (kW)

18

Pilot Projects

ENBRIDGE

Aisin Coremo demonstration Existing 1980's home retrofit

Aisin Coremo demonstration Existing 1980's home retrofit - Entegrus

Sterling Dresden 94 Walpole Island Heights 94 Warren 40 Lake St Clair Chatham-Kent 94 401 Detroit North Buxton 22 South Buxton 401 Lakeshore (401)

Merlin

20

19

ENBRIDGE

Aisin Coremo demonstration

Existing 1980's home retrofit

111111

Existing 1980's home retrofit

22

Aisin Coremo demonstration New NZE home integration - Reids Heritage Homes

- mCHP integrated into new building systems.
- Radiant heating and cooling design.
- "Smart" Building Controls.

Lessons learned Aisin Coremo - Integration and Installation

- Minimal training for trades plumbing, electrical, controls.
- Tools for identifying ideal homes.
 - Energy consumption, time of use.
 - Available heating loads.
- Involvement of certification bodies (TSSA) LDC's or authorities throughout.
- Controls are key retrofit applications require integrated controls for mCHP.
- Outdoor Installation easier but less efficient.
 - Size of equipment matters in retrofit (storage tanks etc.).
- Commissioning 2 ways:

Pilot Projects

- "Start-up" Commissioning .
- Operational Commissioning.

13

26

Hybrid Heating Solution Net Zero Energy Emission

Hybrid Heating Solution:

Natural Resources Canada Has Identified This As Dual-Fuel Thermal Energy Supply Using Air Source Heat Pump (ASHP) and Natural Gas

ÉÉNBRIDGE

Smart Fuel Switching Control (SFSC)

Life Takes Energy-

This cloud-based technology provides a flexible mechanism for residential houses to optimally share the heating load between furnace and ASHP.

Project Overview

- The purpose of the technology is to reduce energy cost of space heating and reduce GHG emissions.
- Provides cloud-based platform and user interface. The platform provides additional features to support the electrical utility to reduce the peak load.
- The ultimate outcome of this project would enable us to define a DSM program with technical and marketing supports.

Smart Fuel Switching Control (SFSC) Base Case vs. Efficient Upgrade Case

Base Case Residential Configuration:

Existing equipment includes:

- · Natural gas furnace for space heating; and
- air conditioner (A/C) for space cooling

Efficient Upgrade Case:

Upgraded equipment includes:

- · High efficiency natural gas furnace for space heating; and
- air source heat pump (ASHP) for space heating/cooling

Target market:

Residential retrofit installation; and expandable to the new construction **Upgrade Case feature:** Quick and cost effective installation Remote monitoring

Equipment ASHP/Furnace: Rheem/Rheem – Lennox/Lennox – Bosch/Armstrong Thermostat: Owon – Ecobee - iComfort

SFSC Pilot Demo Project

- Four pilot projects planned and have started in residential homes since early 2018 •
- Upgrading HVAC system and thermostat
- Install energy metering sensors
- Launch energy cloud server platform to monitor system functionality •

Home Location	Area (ft2)	Age	Туре	Heating Load Cooling Load (kBtu)	NG Annual consumption (m3)
Enbridge - Vaughn	4,600	12 years	Detached	76.5 32.6	2197
Enbridge - Mississauga	3,800	10 years	Detached	76.7 49.5	2951
Union Gas - Chatham	2,800	11 years	Detached	63.8 37.2	2405
Union Gas – Thunder Bay	2,700	12 years	Detached	79.8 35.6	2587

SFSC Pilot Demo Home Installation

MISSISSAUGA

MAR 29, 2018

SFSC Pilot Demo Home Installation

THUNDER BAY

MAY 4, 2018

SFSC Pilot Demo-Preliminary Results at Vaughan

BKRENERGY[®]

If three homes simultaneously install SFSC technology, the obtained GHG emission saving per year is equal to removing one car on the street.